The Activation of Carbon-Chlorine Bonds in Per- and **Polyfluoroalkyl Chlorides: DMSO-Induced** Hydroperfluoroalkylation of Alkenes and Alkynes with Sodium **Dithionite**

Zheng-Yu Long and Qing-Yun Chen*

Laboratory of Fluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, 200032 Shanghai, China

Received January 19, 1999 (Revised Manuscript Received April 15, 1999)

In DMSO, the addition reactions of perfluoroalkyl chlorides, R_FCl, to alkenes or alkynes can occur smoothly in the presence of 1.5 equiv of Na₂S₂O₄ and NaHCO₃ at 75–80 °C for 4–10 h to give the corresponding adducts (RCH₂CH₂R_F or RCH=CHR_F). Ethyl chlorofluoro- (**1f**), chlorodifluoro- (**1g**) acetates, even nonfluorinated compounds, such as ethyl dichloro- (1h), chloro- (1i) acetates, and chloroform (1j) can undergo the similar reaction. Treatment of ω -iodo (or chloro-) perfluoroalkyl chlorides $[X(CF_2)_nCl, n = 2, 4, X = I \text{ or } Cl]$ with >3 equiv of alkenes and $Na_2S_2O_4$ gives directly the symmetrically disubstituted alkanes (RCH₂CH₂)₂(CF₂)_n. The symmetrically and unsymmetrically disubstituted adducts $RCH_2CH_2(CF_2)_{\mu}CH_2CH_2R'$ from ω - iodoperfluoroalkyl chlorides can be also obtained stepwise, i.e., through the further addition reactions of monoadducts, RCH₂CH₂(CF₂)_nCl to olefins. However, for α, ω -dichloroperfluoroalkanes, the similarly stepwise reactions with an alkene is not clean, both bis-adducts and the corresponding ω -hydrides, RCH₂CH₂(CF₂)_nH as byproducts are also formed. In the absence of alkenes or alkynes, per- and polyfluoroalkyl chlorides can be converted to their sulfinate salts and sulfonyl chlorides.

Introduction

Per- and polyfluoroalkyl halides are useful industrial sources of many fluorine-containing materials.¹ Among them, simple bromides and chlorides are thermally and chemically inert and, thus, used as fire extinguishants (e.g., Halon 1301, CF₃Br; Halon 1211, CF₂BrCl), refrigerants (e.g., CFC-12, CF2Cl2; CFC-115, CF3CF2Cl), aerosol propellants (e.g., CFC-11, CFCl₃) or cleaning solvents (e.g., CFC-113, ClCF₂CFCl₂).² However, chlorine or bromine atoms, released from long-lived CFCs or Halons by the action of short wavelength solar ultraviolet radiation, causes the depletion of ozone layer. In line with the Montreal Protocol, the production of Halons and CFCs should be stopped since 1994 and 1996, respectively.³ Along with the appearance of the CFCs and Halons alternatives, there are a quite number of reports on converting CFCs and Halons to useful fluorinated compounds. For example, dibromodifluoromethane was utilized in reductive reactions with olefins to provide 1:1 adducts.⁴ Using CF₂Br₂ or CF₂BrCl as the starting materials, Me_3SiCF_2X (X = Cl, Br) compounds were

prepared which are useful agents for transferring aldehydes to difluoromethylated alcohols in two steps.⁵

Conversion of chlorofluorocarbons into the corresponding hydropoly-fluorocarbons has attracted much attention because of the latter being the potential CFC replacements. Zinc powder in the presence of catalytic amount of nickel dichloride can reduce perfluoroalkyl chloride to the corresponding hydride in high yields.⁶ Reduction of ω -chloroperfluoroalkyl iodides by lithium aluminum hydride in ether at room temperature for several hours not only gives ω -chloroperfluoroalkyl hydrides but also α, ω dihydroperfluoroalkanes.7 Palladium-catalytized hydrogenation⁸ or electrochemical reduction of CF₂Cl₂⁹ results in difluoromethane (HFC-32, CF₂H₂), an excellent new refrigerant.¹⁰ Selective hydrogenolysis of CF₃CCl₃ (CFC-113a) with group VIII transition metal complexes produces CF₃CHCl₂ (HCFC-123)¹¹ which reacts with zinc and aldehyde to give the corresponding alcohol through organozinc intermediates.¹² Besides the organometallic reductants, such as organotin hydrides,¹³ organosiliconhydrides [e.g., HSi(C₂H₅)₃] were reported very recently as selective reductants of halopolyfluorocarbons [e.g.,

^{(1) (}a) Chambers, R. D. Fluorine in Organic Chemistry, Wiley-Inter-Science: New York, 1973. (b) Hudlicky, M. Chemistry of Organic Fluorine Compounds; 2nd ed.; Ellis, Horwood: Chichester, England, 1976

^{(2) (}a) Powell, R. L. Refrigerants, propellants and foam-Blowing Agents. In Chemistry of Organic Fluorine Compounds II, Hudlicky, M. Ed.; American Chemical Society, Wishington, DC, 1995. (b) Banks, R. E., Smart, B. E., Tatlow, J. C., Eds.; *Organofluorine Chemistry*: Principle and Commercial Applications; Plenum Press: New York, 1994.

^{(3) (}a) Banks, R. E. J. Fluorine Chem. 1994, 67, 193. (b) Franciso, J. S.; Maricq, M. M. Acc. Chem. Res. 1996, 29, 391.

^{(4) (}a) Burton, D. J.; Kehoe, L. J. *Tetrahedron Lett.* **1966**, 5163. (b) Maruoka, K.; Sano, H.; Fukutani, Y.; Yamamoto, H. *Chem. Lett.* **1985**, 1689. (c) Hu, C.-M.; Chen, J. J. Chem. Soc., Chem. Commun. 1993, 72.

⁽⁵⁾ Yudin, A. K.; Prakash, G. K. S.; Deffieux, D.; Bradley, M.; Bau, R.; Olah, G. A. J. Am. Chem. Soc. 1997, 119, 1572.
 (6) Chen, Q.-Y.; W, J.-P. Chinese J. Chem. 1991, 9, 181.

⁽⁷⁾ Chen, Q.-Y.; Chen, M.-F. J. Fluorine Chem. 1990, 49, 107.

⁽⁸⁾ Cog, B.; Cognion, J. M.; Figneras, D.; Tourigant, D. J. Catal. **1993**, *141*, 21. (9) Delli, E.; Kouloumtzoglou S.; Kyriacou, G.; Lambrou, C. J. Chem.

Soc., Chem. Commun. 1998, 1693. (10) Chem. Ind. 1991. 18. 31.

⁽¹¹⁾ Cho, O. J.; Lee, I. M.; Park, K. Y.; Kim, H. S. J. Fluorine Chem. **1995**, 71, 107.

 ⁽¹²⁾ Tamura, M.; Kekiya, A. *J. Fluorine Chem.* 1995, *71*, 119.
 (13) Van, D. P. M.; Belter, R. K.; Borouski, R. J.; Ellis, L. A. S.;
 Pershichini, P. J., III; Poss, A. J.; Rygas, T. P.; Tung, H. S. *J. Fluorine* Chem. 1995, 71, 59 and references therein.

ClCF₂CFCl₂, CF₃CFClCF₂Cl, and (CF₃)₂CCl₂].¹⁴ The order of decreasing activity of different groups in the reduction is $-CCl_2 \rightarrow -CClF \rightarrow -CClH \rightarrow -CF_2Cl$. Besides the ability of hydrogenolysis as mentioned above, the carbonchlorine bond in perfluoroalkyl chloride, R_FCF₂Cl, is hardly functionized by other groups.¹⁵ A special analogue, chlorodifluoromethylbenzene (C₆H₅CF₂Cl), was reduced with SmI₂/HMPA to C₆H₅CF₂H (major) through the induction of a simultaneously anionic addition to ketones giving the corresponding alcohols (minor).¹⁶ More importantly, progress in this area was made with the sulfinatodehalogenation of perhalocarbons, which was discovered and developed by Huang and co-workers.¹⁷ Using inexpensive sulfur-containing reductants (e.g., $Na_2S_2O_4$) under mild conditions, per- and polyfluoroalkyl halides $(R_FX, X = Br, I; R_FCCl_3)$ can smoothly give the corresponding sulfinate salts. The sulfinates may be readily converted to perfluoroalkanesulfonyl halides, acids, and their derivatives. More interestingly, this method has been widely applied to perfluoroalkylate alkenes, dienes, allenes, alkynes, and aromatics. However, this system is confined to perhalocarbons and cannot be applied to perfluoroalkyl chlorides, i.e., R_FCF₂Cl.¹⁸ For example, tetrachloromethane afforded the desired product, CCl₃-SO₂Na, with high yield while chloroform was shown to be completely inert.¹⁹ Only recently, it was found that the difluoromethylation of alkenes and alkynes with iododifluoromethane could occur under the standard sulfinatodehalogenation conditions.²⁰ When we extended this method to 2,2,2-trifluoroethyl halides, the iodide and bromide could be smoothly sulfinatodehalogenated with sodium dithionite in CH₃CN/H₂O at 40-60 °C for 10 h, while the chloride (CF₃CH₂Cl, HCFC-133a) was completely inert.²¹ To our surprise, if using dimethyl sulfoxide (DMSO) as a solvent instead of CH₃CN/H₂O, CF₃CH₂Cl could also be converted to the sulfinate and trifluoroethylate alkenes and alkynes.²² The tremendous role of

(16) Yoshida, M.; Suzuki, D.; Tyoda, M. J. Chem. Soc., Perkin Trans. 1 1997, 643.

(21) Long, Z.-Y.; Chen, Q.-Y. Tetrahedron Lett. 1998, 39, 8487.

Scheme 1^a

$$\begin{array}{rrr} R_{\rm F}Cl &+ & RCH=CH_2 & \xrightarrow{\rm DMSO} & R_{\rm F}CH_2CH_2R \\ 1 & 2 & 3 \end{array}$$

 ${}^{a} R_{F} = n - C_{4} F_{9}$ (**a**), H(CF₂)₄ (**b**), H(CF₂)₆ (**c**), CF₃CH₂, (**d**), ClCF₂ (e), CFHCO₂Et (f), CF₂CO₂Et (g), ClCHCO₂Et (h), CH₂CO₂Et (i), $HCCl_2$ (j), $CF_2ClCFCl$ (k). $R = n - C_4H_9$ (a), $n - C_5H_{11}$ (b), $n - C_6H_{13}$ (c), n-C₇H₁₅ (d), CH₂OCH₂CH=CH₂ (e), c-C₄H₈ (f), CH₂OAc (g), SiMe₃ (h), CH₂OC₂H₅ (i), CH₂OH (j).

solvent promoted us to examine the sulfinatodehalogenation possibility of per- and polyfluoroalkyl chlorides. We were fortunate to find the positive results not only for perfluoroalkyl chlorides but also for some nonfluorinated ones.²³ This paper presents our observation.

Results and Discussion

1. Hydroperfluoroalkylation of Alkenes with Perand Polyfluoroalkyl Chlorides. It was found that perand polyfluoroalkyl chlorides **1** can smoothly react with alkenes 2 in DMSO in the presence of sodium dithionite and sodium bicarbonate ($1:2:Na_2S_2O_4:NaHCO_3 = 1:1.5:$ 1.5:1.5) at 75-80 °C for 4-6 h to give the corresponding chlorine-free monoadducts 3 in good yields (see Scheme 1)

The addition products 3be, 3ce, 3ge, 3je, and 3ke from the chlorides and 2e are the tetrahydrofuran derivatives, indicative of a free radical intermediate.²⁴ The cis- and trans- configuration of 3e can be assigned by comparing the ¹H NMR chemical shift of -CH₃ (*cis*- < *trans*-) (see Scheme 2).^{24b}

Interestingly, ethyl chlorofluoro- (1f), chlorodifluoro-(1g), and even nonfluorinated compounds, such as dichloro- (1h), chloro-(1i) acetates, and chloroform (1j) can undergo the similar reaction. Notably, for synthesizing α -fluoro or α, α -difluoroacetates and amides, the starting material chlorocompounds need not be converted first to the corresponding iodides before reduction as previous works did;²⁵ thus, this method seems to be more straightforward (see Scheme 3).

Both dichlorodifluoromethane (1e) and 1,1,2-trifluorotrichloroethane (1k) can readily give the monohydroperfluoroalkylated products in the presence of equiva-

⁽¹⁴⁾ Petrov, V. A. J. Org. Chem. 1998, 63, 7294. (15) (a) The C–Cl bond in a CF_2Cl group can be weakened by an activating neighboring group, such as chlorodifluoromethylsilanes,⁵ chlorodifluoromethyl enol ethers (Rajaonah, M.; Rock, M. H.; Jean-Pierre, Begue; Bonnet-Delpon, D.; Condon, S.; Jean-Yves N. *Tetrahe*dron Lett. 1998, 39, 3137.), chlorodifluoroesters (Lang, R. W.; Schaub, B. Tetrahedron Lett. 1988, 29, 2943 and references therein), and chlorodifluoromethylated ketones (Burkholder, C.; Dolbier, W. R. Jr; Medebielle, M.; Ndedi, A. *Tetrahedron Lett.* **1998**, *39*, 8853.). The $\rm CF_2^$ anion equivalents generated from these compounds by electrochemical metal catalyzed methods or by electron-donor tetrakis(dimethylamino)ethylene stimulation can be trapped by aldehydes and ketones to give the corresponding alcohols. (b) The attack of sulfur, oxygen and nitrogen nucleophiles on $CF_2ClCCl_2F,\,CF_2ClCCl_3$ has been established as a halophilic rather than S_N2 or single electron-transfer mechanism, the products derived are involved in the olefin intermediates (Li, X.-.; Jiang, X.-K.; Pan, H.-Q.; Hu, J.-S.; Fu, W.-M. Pure Appl. Chem. **1987**, *59*, 1015.)

^{(17) (}a) Huang, W.-Y.; Huang, B.-N.; Wang, W. Acta Chim. Sin. (*Chin. Ed.*) **1983**, *41*, 1193. (b) Huang, B.-N.; Wang, B.-H.; Wang, W.; Huang, W.-Y. Acta Chim. Sin. (Engl. Ed.) **1986**, *1*, 68. (c) Huang, W.-Y.; Huang, B.-N.; Wang, W. Acta Chim. Sin. (Engl. Ed.) **1984**, 2, 188. (d) Huang, W.-Y.; Huang, B.-N.; Wang, W. Acta Chim. Sin. (Engl. Ed.) **1985**, *3*, 253. (e) Huang, W.-Y.; Chen, J.-L. *Acta Chim. Sin.* (Engl. Ed.) 1985, 4, 376.

^{(18) (}a) Huang, W.-Y.; Wang, W.; Huang, B.-N. Acta Chim. Sin. (Chin. Ed.) **1985**, 43, 409. (b) Huang, W.-Y.; Lu, L.; Zhang, Y.-F. Chin. J. Chem. **1990**, 4, 350. (c) Huang, W.-Y.; Zhang, H.-Z. Chin. J. Chem. 1991, 1, 76.

⁽¹⁹⁾ Huang, W.-Y.; Huang, B.-N.; Chen, J.-L. Acta Chim. Sin. (Chin. Ed.) 1986, 44, 45.

⁽²⁰⁾ Cao, P.; Duan, J.-X.; Chen, Q.-Y. J. Chem. Soc., Chem. Commun. 1994, 737.

^{(22) (}a) Long, Z.-Y.; Chen, Q.-Y. PRC Patent CN 98110884.9. (b) Long, Z.-Y.; Chen, Q.-Y. PRC Patent CN 98110883.0.

^{(23) (}a) Long, Z.-Y.; Chen, Q.-Y. Patent: CN 98122019.3. (b) Long, Z.-Y.; Chen, Q.-Y. PRC Patent CN 98122021.5.

^{(24) (}a) Chen, Q.-Y. Single electron-transfer reaction of perfluoroalkyl iodides. In Organofluorine Chemistry in China; Huang, W. Y.,

<sup>alkyl iodides. In Organofluorine Chemistry in China; Huang, W. Y.,
Ed.; Shanghai Science and Technology Press: Shanghai, 1996; Chapter
5, p 112. (b) Chen, Q.-Y. Yang, Z.-Y. J. Fluorine Chem. 1985, 28, 399.
(25) (a) Zhi, C.-X.; Chen, Q.-Y. J. Chem. Soc., Perkin Trans. 1 1996,
1741. (b) Wang, Y.; Yang, Z.-Y.; Burton, D. J. Tetrahedron Lett. 1992,
33, 2137. (c) Yang, Z.-Y.; Burton, D. J. J. Fluorine Chem. 1989, 45, 435.
(d) Yang, Z.-Y.; Burton, D. J. J. Org. Chem. 1991, 56, 5125. (e) Huang,
W.-Y.; Lu, L.; Zhang, Y.-F. Chin. J. Chem. 1990, 1, 68.</sup>

Table 1. Reaction of R_FCl with Alkenes in DMSO^a

entry	R_FCl^b	alkene	T°C	time (h)	3 . yield % ^c
1	1a	2c	75	6	80
2		2d	75	6	81
3		2f	70	5	71
4	1b	2a	70	6	63
5		2c	80	4	80
6		2d	75	6	88
7		2e	70	6	$76(cis:trans = 2.3:1)^{e}$
8		2f	70	6	72
9	1c	2a	75	5	82
10		2c	75	6	80
11		2d	75	6	82
12		2e	75	6	$70(cis:trans = 2.3:1)^{e}$
13		2f	75	6	78
14	1d	$\mathbf{2a}^d$	90	10	58
15		$\mathbf{2c}^d$	90	10	70
16	1e	$\mathbf{2c}^d$	90	10	86
17	1f	2c	75	6	74
18		2d	75	8	71
19		2f	75	6	63
20		2h	75	6	82
21		2i	75	7	75
22	1g	2b	75	7	80
23	_	2c	75	7	78
24		2e	70	6	73(cis:trans = 3:1) ^e
25		2f	70	6	88
26		2g	75	6	68
27		2h	75	6	62
28	1h	2a	79	6	60
29		2c	80	6	71
30		2f	75	7	65
31	1i	2g	75	10	45
32	1j	2a	80	6	83
33	÷	2c	80	5	89
34		2e	80	4	73(cis:trans = 4:1) ^e
35		2g	80	4	70
36		2j	75	6	61
37	1k	2a	60	6	74
38		2e	60	6	$48(cis:trans = 1:1)^{e}$
39		2f	60	6	69
40		2g	55	6	63
		-			

^{*a*} **1:2**:Na₂S₂O₄:NaHCO₃ = 1:1.5:1.5: ^{*b*} The conversion of R_FCl was 100% (determined by ¹⁹F NMR). ^{*c*} The isolated yields were based on R_FCl and a trace of R_FH was also obtained. ^{*d*} In a sealed ampoule. ^{*e*} The ratio of cis/trans based on the ¹H NMR.

Scheme 4

 $\begin{array}{cccc} Y(CF_{2})_{4}Cl + & RCH=CH_{2} & \xrightarrow{DMSO} & RCH_{2}CH_{2}(CF_{2})_{4}CH_{2}CH_{2}R\\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ Y = I \ (4) & & R = n-C_{4}H_{9} \ (a), \ n-C_{6}H_{13} \ (c)\\ & & & Y = Cl \ (5) \end{array}$

lents of alkene and Na₂S₂O₄. For the former, dihydroperfluoroalkylated derivatives (RCH₂CH₂)₂CF₂ have never been obtained despite using large excess of alkenes and Na₂S₂O₄, while for the latter, one of chlorine at the end group of $-CFCl_2$ was smoothly substituted and the reaction became complicated when employing large excess of Na₂S₂O₄. All the results are listed in Table 1.

2. Bishydroperfluoroalkylation of Alkenes with ω -Iodo (or chloro)Perfluoroalkyl Chlorides. When ω -iodo (or chloro) perfluoroalkyl chlorides **4** and **5** were treated with >3 equivalents of alkenes and Na₂S₂O₄ in DMSO, the symmetrically disubstituted alkanes **6** were obtained directly (see Scheme 4).

The same disubstituted products from ω -iodoperfluoroalkyl chlorides can be formed stepwise, i.e., monosubstituted perfluoroalkyl chloride, formed in the presence of equivalents of starting materials (ω -iodoperfluoroalkyl chloride:alkene:Na₂S₂O₄:NaHCO₃ = 1:1.5:1.5:1.5), may

Scheme 5

 $I(CF_2)_2Cl + CH_2 = CH(CH_2)_2COCH_3 \xrightarrow{Na_2S_2O_4} Cl(CF_2)_2CH_2CH_2(CH_2)_2COCH_3$ 7 2k 8

 $\frac{\text{RCH}=\text{CH}_2}{\text{Na}_2\text{S}_2\text{O}_4} \quad \text{RCH}_2\text{CH}_2(\text{CF}_2)_2(\text{CH}_2)_4\text{COCH}_3 + \text{H}(\text{CF}_2)_2(\text{CH}_2)_4\text{COCH}_3$ DMSO, 90°C 9 ~10%

Table 2. Reaction of ω-Iodo (or Chloro) Perfluoroalkyl Chlorides with Alkenes in DMSO (R_FCl:2:Na₂S₂O₄:NaHCO₃ = 1:3:3:3)

R _F Cl	alkene	T°C	time(h)	converted $\%^a$	product	yield % ^b
4	2a	90	10	100	6a	73
4	2c	85	10	100	6c	65
5	2a	90	10	90	6a	54
5	2c	90	12	88	6c	50
7	2k ^c	40	2	100	8	72
8	2a ^c	95	10	90	9a	52
8	$2c^c$	90	10	80	9c	60

 a The conversion determined by ^{19}F NMR. b The isolated yields based on R_FCl and in addition to 5-10% of $R_FH.$ c $R_FCl:2:Na_2SO_4:NaHCO_3$ = 1:1.5:1.5:1.5.

react further with the same or different alkene to afford bis-substituted one. For example, treatment of β -iodotetrafluoroethyl chloride (7) with 4-acetyl-butene-1 (**2k**) in the presence of 1.5 equiv of Na₂S₂O₄ in DMSO at 40 °C for 2 h to give the corresponding monoadduct (**8**). This new adduct can react further with hexene-1 (**2a**) or octene-1 (**2c**) to afford the unsymmetrically bis-adduct (**9**) with a small amount of the hydride as byproduct (see Scheme 5).

However, unlike the ω -iodoperfluoroalkyl chlorides, the α, ω -dichloroperfluoroalkanes (e.g., **5**) are unable to react stepwise cleanly with olefin and both the bis-adduct and the corresponding ω -hydride as byproducts were obtained despite only using 1.5 equiv of starting materials. The results are shown in Table 2. (See also Scheme 6.)

3. Hydroperfluoroalkylation of Alkynes with Perand Polyfluoroalkyl Chlorides. Similar to alkenes, alkynes reacted with perfluoroalkyl chlorides in the presence of 1.5 equiv. of Na₂S₂O₄ in DMSO at 75–80 °C for 7–10 h to give the corresponding *E*/*Z* mixtures of perfluoroalkylated alkene in 45–76% yields and a small amount of R_FH (10–15%). The *E* and *Z* isomers were determined by comparing the chemical shifts of the –**CF**₂CH=CHR in their respective ¹⁹F NMR spectra, the downfield signal being assigned to *Z*-isomer and the upfield being assigned to *E*-isomer.²⁶ The stereochemistry of **11gd** was designated *E*-isomer on the basis of the coupling constant between the vinyl protons (³J_{H,H} = 15.8 Hz). The results are shown in Table 3. (See also Scheme 7.)

4. The Synthesis of Sodium Perfluoroalkanesulfinates and Their Derivatives from Perfluoroalkyl Chlorides and Na₂S₂O₄. Perfluoroalkyl chlorides 1 can be easily converted to the corresponding sulfinate salts 12 with Na₂S₂O₄/NaHCO₃ in DMSO at 75 °C for 8 h. Both the conversion and yield are high (>80%) as shown by ¹⁹F NMR spectroscopy. The isolation of the sulfinate salts

Table 3. Reaction of R_FCl with Alkynes in DMSO^a

					•	
entry	R_FCl^b	alkyne	T°C	time	Z / E^c	yield $\%^d$
1	1b	10a	75	8	60/40	72
2		10c	80	7	92/8	71
3		10d	75	8	15/85	65
4	1c	10a	75	8	53/47	72
5		10c	75	8	82/18	69
6		10d	75	10	15/85	76
7	1d	10a	90	10	70/30	47
8		10b	90	10	75/25	52
9	1f	10c	70	10	50/50	58
10	1g	10a	75	10	55/45	59
11		10c	70	10	10/90	64
12		10d	75	10	0/100	45
13		10e	75	10	38/62	68

^{*a*} **1:2**:Na₂S₂O₄:NaHCO₃ = 1:1.5:1.5:^{*b*} The conversion of R_FCl was 100% determined by ¹⁹F NMR. ^{*c*} The ratio of Z/E was determined by ¹⁹F NMR. ^{*d*} The isolated yields based on R_FCl.

 R_F = H(CF₂)₄ (b), H(CF₂)₆ (c), CF₃CH₂ (d), CFHCO₂Et (f), CF₂CO₂Et (g)

 $R = C_4 H_9$ (a), $C_6 H_{13}$ (b), Ph (c), $CH_2 OH$ (d), $CH_2 OCH_3$ (e)

R _F CI	DMSO	R _F SO ₂ Na -	Cl ₂	R _F SO ₂ Cl
1		12		13
R _F =	C4F9 (a),			40%
	H(CF ₂) ₄ (b),			32%
	CF3CH2 (c),			37%

from inorganic impurities is very difficult because all of them are soluble in water. An usual treatment with chlorine gas in ice-cooled water gives the corresponding sulfonyl chlorides in low yield, sometimes, accompanying the formation of R_FSO_3H (see Scheme 8).

It is known that treatment of the sulfinate salt with an oxidant generates the perfluoroalkyl radical which can

(26) Chen, J.; Hu, C.-M. *Chinese J. Chem.* **1994**, *12*, 468. The *Z*/*E* ratios of the addition products in Table 3 are not regular which cannot be completely understood yet. Generally, when the $R_{\rm F}^{\bullet}$ adds to alkynes, they will form both *Z*- and *E*- radical intermediate V-Z and V-E.

These intermediates can either isomerize or abstract a hydrogen from the solvent. If the lifetimes of the radical intermediates are lengthened by stabilizing (or spin-delocalizing) effects of the substituent R, then these radical intermediates will be able to isomerize and concentration of the more stable isomer will increase greatly, i.e., the amount of radical intermediate V-*E*, hence, **11***E* isomer will become predominant. On the other hand, if the life-spans of V=-Z and V-E are very short, then the radical intermediates can abstract hydrogen atom before they have a chance to isomerize, thus leading to a mixture of ZE isomers of 11. (see Li, A.-R.; Chen, Q.-Y. Synthesis 1996, 5, 606.). This rationalization appears plausible for **11gc** ($R=C_6H_5$, Z/E=10.90, entry 11, Table 3) and **11ba** ($R=n-C_4H_9$, Z/E=60/40, entry 1, Table 3), because it is known that C6H5 substitute is much more effective spinstabilizer than alkyl substitutes (σ_{jj} of C₆H₅ 0.47, σ_{jj} of alkyl = 0.15) (Jiang, X.-K.; Ji, G.-Z. J. Org. Chem. **1992**, 57, 6051.). However, it cannot explain the big difference of the \mathbb{Z}/\mathbb{E} ratios between the products **11bc** (Z/E = 92/8) and **11gc** (Z/E = 10/90) (entry 2 and 11, Table 3) which were produced from same alkyne (10) but different R_FCl (1b versus **1**g). Therefore, besides R, the β - substituent R_F in vinyl radicals, V-Z and V-E, seemingly, has also some influence on the neighboring free radical and, hence, exert the steroselectivity of the addition reaction.

Scheme 9

 $H(CF_{2})_{6}Cl \xrightarrow{DMSO} H(CF_{2})_{6}SO_{2}Na \xrightarrow{DMSO} 3cc + H(CF_{2})_{6}H$

Table 4. Solvents Are Tested in the Reaction of 1a and 1c with 2b at 75 $^{\circ}$ C for 5 h^a

R _F Cl	alkene	solvent	converted % ^b	3 %	R _F H%
1a	2b	DMSO	100	80	<10
1a	2b	HMPA	75	50	50
1c	2b	HMPA	60	25	75
1c	2b	DMF	10		
1c	2b	DMSO/H ₂ O(5/1)	100	48	35^c
1a	2b	CH ₃ CN/H ₂ O(1/1)	0	0	0
1a	2b	CH ₃ OH	0	0	0

^{*a*} 1:2:Na₂S₂O₄:Na_HCO₃ 1:1.5:1.5:1.5: ^{*b*} The conversion of R_FCl was determined by ¹⁹F NMR. ^{*c*} The byproduct is H(CF₂)₆SO₂Na.

add to the olefin producing the corresponding adduct.²⁷ However, in our case the sodium sulfinate (**12**), obtained without isolation in DMSO, can react with alkene at 80 °C for 8-10 h affording the monoadduct. However, the yield is low because DMSO is a weak oxidant, as demonstrated in Scheme $9.^{28}$

5. Study of Solvent Effect. From the results mentioned above, it is apparent that, dramatically different from CH_3CN/H_2O , DMSO chosen in these reaction seems essential for the activation of carbon-chlorine bonds of perfluoroalkyl chlorides. Because, like DMSO, hexamethylphosphoramide (HMPA) or dimethylforamide (DMF)²⁹ are usually considered to be good solvents for electron transfer (ET) reaction. Thus, these solvents were employed to study their effect in the course of the reactions (**1a**, **1c**, and **2b** used as an example). The data are listed in Table 4.

The results from Table 4 showed that, as expected, HMPA or DMF can be also used in this reaction. However, the conversion and yield of the adduct were lower as compared with those in DMSO, with the hydride being the major product. When 20% (v/v) of H_2O was used as a cosolvent in DMSO, the yield was greatly decreased accompanying a significant amount of sulfinate salt. Therefore, DMSO seems to be the best solvent for the reaction.

6. Inhibition and Mechanism Consideration. Before the mechanism consideration, some inhibition experiments were carried out. Addition of ET scavenger, i.e., *p*-dinitrobenzene (DNB) (20 mol %) or free radical inhibitor, i.e., hydroquinone (HQ) (20 mol %) to the reaction mixture of **1c** and **2a** decreased the conversion of **1c** significantly (from 100% without DNB and HQ to 50% and 33%, respectively) at the same reaction temperature and time (75 °C for 5 h). UV irradiation accelerated the reaction, e.g., at 75 °C for 1.5 h the conversion of **1c** is 80% under UV while 20% under laboratory illumination.

Both the inhibition experiments and the formation of tetrahydrofuran derivatives from the reaction with diallyl ether indicated that the perfluoroalkyl radical may be involved in the reaction mechanism. The most likely explanation of generation of R_F^* is that R_FCl , quite similar to R_FI ,¹⁷ accepts one electron from radical anion of sulfur

^{(27) (}a) Huang, W.-Y.; Xie, Y. *Chin. J. Chem.* **1990**, *4*, 362. (b) Huang, W.-Y.; Hu, L.-Q.; Xie, Y. *Acta Chim. Sin.* (*Engl. Ed.*) **1989**, *2*, 190.

⁽²⁸⁾ Huang, S.-L.; Omura, K.; Swern, D. Synthesis 1978, 297.

 ^{(29) (}a) Meijs, G. F. J. Org. Chem. 1986, 51, 606. (b) Bunnett, J. F.;
 Scamehorn, R. G.; Traber, R. P. J. Org. Chem. 1976, 41, 3677.

dioxide, produced by decomposition of sodium dithionite, then dissociates to give R_F^* and Cl^- . The R_F . adds either to alkene to form intermediate A, or to SO_2^- . to form sulfinate **12**. The addition reaction of R_F^* to alkene is much faster than that to SO_2^{-*} , thus, none of the sulfinate is accompanied. The intermediate, **A**, did not abstract chlorine from R_FCl due to the strong carbon–chlorine bond but easily picked a hydrogen from DMSO to afford the adduct. Chlorination of the sulfinate **12** gives the corresponding sulfonyl chloride. The R_F^* abstracts hydrogen from the solvent producing the byproduct, R_FH (see Scheme 10).

The question arises why the reaction of R_FCl can be induced by DMSO but not by CH₃CN/H₂O, the latter being very suitable for sulfinatodehalogenation of R_FX (X = I, Br) and R_FCCl_3 . The reason is not very clear yet now. In fact, although Na₂S₂O₄ is sparingly soluble in DMSO at room temperature, the mixture at 75 °C during stirring becomes highly dispersive. However, the solvent polarity, dielectric constant and dipole moment of DMSO and CH₃CN are not different very much [E_TDMSO (30) = 46 kcal/mol, E_T CH₃CN (30) = 45 kcal/mol; $\epsilon^{\rm DMSO}$ (25 °C) = 46.7, $\epsilon^{\rm CH_3CN}$ (20 °C) = 37.5; μ (DMSO) = 13.0 \times 10⁻³⁰ C m, μ (CH₃CN) = 11.5 \times 10⁻³⁰ C m.].³⁰

In conclusion, we have developed a new practical hydroperfluoroalkylation method of alkenes and alkynes with ever thought inert perfluoroalkyl chlorides in the presence of sodium dithionite. In addition, perfluoroalkanesulfinates and sulfonyl chlorides can be prepared directly from available perfluoroalkyl chlorides. DMSO plays a unique role in these reactions.

Experimental Section

¹H NMR and ¹⁹F NMR spectra were recorded at 90 or 300 MHz and 282 MHz. Chemical shifts were reported in parts per million relative to TMS as an internal standard for ¹H NMR and to CF₃COOH as an external standard (positive for upfield shifts) for ¹⁹F NMR. The solvent for NMR measurement was CDCl₃ (unless otherwise noted). DMSO were distilled from CaH₂ and other reagents were purified prior to use.

Typical Procedure for the Reaction of 1 with 2. Under a nitrogen atmosphere, **1a** (1.27 g, 5 mmol), **2c** (0.84 g, 7.5 mmol), Na₂S₂O₄ (1.38 g, 7.5 mmol), NaHCO₃ (0.63 g, 7.5 mmol) and DMSO (25 mL) was added to a 50 mL three-necked roundbottomed flask equipped with stirrer and condenser. The mixture was then heated to 75 °C for 6 h with stirring. The conversion of **1a** was 100%, determined by ¹⁹F NMR. After cooling, the mixture was poured into ice water (30 mL). The aqueous layer was extracted three times with ether (3 × 30 mL). The combined extracts were washed with water (3 × 20 mL) and dried over Na₂SO₄. After removing ether, the residue was subjected to column chromatography on silica gel to give **3ac** as a colorless oil (1.33 g, yield 80%).

1,1,2,2,3,3,4,4-Nonafluorododecane (3ac): colorless oil; ¹H NMR δ 0.88 (t, J = 6.5 Hz, 3H), 1.15–1.50 (m, 12H), 1.80– 2.45 (m, 2H); ¹⁹F NMR δ 4.2 (s, 3F), 37.7 (t, J = 10.5 Hz, 2F), 47.5 (s, 2F), 49.0 (s, 2F); Ms m/z (relative intensity) 332 (M⁺, 1.40), 289 (100), 57 (42.53), 43 (25.41); HRMS calcd for C₁₂H₁₇F₉ 332.1187, found 332.1191.

1,1,2,2,3,3,4,4-Nonafluorotridecane (3ad): colorless oil; ¹H NMR δ 0.90 (t, J = 6.5 Hz, 3H), 1.15–1.55 (m, 14H), 1.80– 2.42 (m, 2H); ¹⁹F NMR δ 4.2 (s, 3F), 37.6 (t, J = 10.0 Hz, 2F), 47.3 (s, 2F), 49.0 (2F); Ms m/z (relative intensity) 345 (M⁺–1, 3.24), 317 (20.12), 303 (43.34), 289 (25.22), 71 (47.85), 43 (100); HRMS calcd for C₁₃H₁₈F₉ (M⁺ – 1) 345.1264, found 345.1167.

1,1,2,2,3,3,4,4-Nonafluorobutylcyclohexane (3af): colorless oil; ¹H NMR δ 1.13–2.00 (m, 11H); ¹⁹F NMR δ 4.2 (s, 3F), 41.3 (d, J = 12 Hz, 2F), 44.5 (s, 2F), 49.3 (s, 2F); Ms m/z (relative intensity) 302 (M⁺, 1.70), 301 (14.39), 263 (20.47), 83 (100); HRMS calcd for $C_{10}H_{10}F_9$ (M⁺–1) 301.0638, found 301.0631.

1,1,2,2,3,3,4,4-Octafluorodecane (3ba): colorless oil; ¹H NMR δ 0.89 (t, J = 6.5 Hz, 3H), 1.35 (m, 8H), 1.98–2.60 (m, 2H), 6.02 (tt, J = 52, 5.6 Hz, 1H); ¹⁹F NMR δ 37.5 (t, J = 10 Hz, 2F), 48.9 (s, 2F), 53.4 (s, 2F), 60.4 (d, J = 49.3 Hz, 2F); Ms m/z (relative intensity) 286 (M⁺, 4.05), 285 (34,69), 257 (12.96), 43 (100); HRMS calcd for C₁₀H₁₄F₈ 286.0968, found 286.0982.

1,1,2,2,3,3,4,4-Octafluorododecane (3bc): colorless oil; ¹H NMR δ 0.89 (t, J = 6.5 Hz, 3H), 1.33 (m, 10H), 1.59 (m, 2H), 2.05 (tt, J = 18.9, 7.9 Hz, 2H), 6.03 (tt, J = 52, 5.6 Hz, 1H); ¹⁹F NMR δ 37.5 (t, J = 9.7 Hz, 2F), 48.8 (s, 2F), 53.4 (m, 2F), 60.4 (d, J = 49.3 Hz, 2F); Ms m/z (relative intensity) 314 (M⁺, 6.55), 285 (14.58), 57 (81.34), 43 (100); HRMS calcd for C₁₂H₁₈F₈ 314.1280, found 314.1277.

1,1,2,2,3,3,4,4-Octafluorotridecane (3bd): colorless oil; ¹H NMR δ 0.89 (t, J = 6.5 Hz, 3H), 1.20–1.45 (m, 14H), 1.83– 2.42 (m, 2H), 6.02 (tt, J = 52, 6 Hz, 1H); ¹⁹F NMR δ 37.5 (t, J = 10.0 Hz, 2F), 48.8 (s, 2F), 53.3 (s, 2F), 60.3 (d, J = 51.2 Hz, 2F); Ms *m*/*z* (relative intensity) 328 (M⁺, 1.69), 299 (10.44), 285 (44.28), 271 (22.86), 257 (14.98), 57 (100); HRMS calcd for C₁₃H₂₀F₈ 328.1437, found 328.1428.

3-(2,2,3,3,4,4,5,5-Octafluoropentyl)-4-methyltetrahydrofuran (3be):^{24b} colorless oil; ¹H NMR δ 1.05 (d, J = 6.5 Hz, 0.7 × 3H, *cis*-CH₃), 1.12 (d, J = 6.1 Hz, 0.3 × 3H, *trans*-CH₃), 1.86–2.66 (m, 4H), 3.30–3.53 (m, 2H), 3.91–4.12 (m, 2H), 6.03 (tt, J = 52, 5.5 Hz, 1H); ¹⁹F NMR δ 36.5 (m, 2F), 48.8 (s, 2F), 53.2 (s, 2F), 60.7 (d, J = 51.7 Hz, 2F); Ms *m/z* (relative intensity) 301 (M⁺+1, 35.23), 299 (19.61), 270 (71.90), 69 (100); HRMS calcd for C₁₀H₁₂F₈O 300.0760, found 300.0757.

1,1,2,2,3,3,4,4-Octafluorobutylcyclohexane (3bf): colorless oil; ¹H NMR δ 1.12–2.20 (m, 11H), 6.03 (tt, J = 52, 6 Hz, 1H); ¹⁹F NMR δ 40.7 (d, J = 13 Hz, 2F), 45.8 (s, 2F), 53.5 (s, 2F), 60.2 (d, J = 52 Hz, 2F); Ms *m*/*z* (relative intensity) 284 (M⁺, 0.43), 283 (2.69), 263 (12.47), 113 (12.43), 83 (100); HRMS calcd for C₁₀H₁₁F₈ (M⁺–1) 283.0733, found 283.0734.

1,1,2,2,3,3,4,4,5,5,6,6-Dodecafluorododecane (3ca): colorless oil; ¹H NMR δ 0.89 (t, J = 6.5 Hz, 3H), 1.32 (m, 6H), 1.56 (m, 2H), 2.05 ((tt, J = 18.5, 8.7 Hz, 2H), 6.03 (tt, J = 52, 5.2 Hz, 1H); ¹⁹F NMR δ 37.8 (m, 2F), 45.3 (m, 2F), 47.0 (s, 4F), 53.4 (s, 2F), 60.4 (d, J = 52.6 Hz, 2F); Ms *m*/*z* (relative intensity) 386 (M⁺, 1.71), 385 (13.14), 367 (14.58), 43 (100). Anal. Calcd for C₁₂H₁₄F₁₂: C, 37.32; H, 3.62; F, 59.06. Found C, 37.23; H, 3.56; F, 58.67.

1,1,2,2,3,3,4,4,5,5,6,6-Dodecafluorotetradecane (3cc): colorless oil; ¹H NMR δ 0.89 (t, J = 6.5 Hz, 3H), 1.33 (m, 10H), 1.57 (m, 2H), 2.05 (tt, J = 18.6, 8.6 Hz, 2H), 6.03 (tt, J = 52, 6 Hz, 1H); ¹⁹F NMR δ 37.7 (t, J = 15.6 Hz, 2F), 45.2 (s, 2F), 46.9 (s, 4F), 53.0 (s, 2F), 60.4 (d, J = 52 Hz, 2F); Ms m/z (relative intensity) 414 (M⁺, 1.17), 385 (7.50), 371 (36.99), 57 (93.07), 43 (100); HRMS calcd for C₁₄H₁₈F₁₂ 414.1217, found 414.1208. Anal. Calcd for C₁₄H₁₈F₁₂: C, 40.58; H, 4.32; F, 55.07. Found: C, 40.29; H, 4.22; F, 55.59.

1,1,2,2,3,3,4,4,5,5,6,6-Dodecafluoropentadecane (3cd): colorless oil; ¹H NMR δ 0.89 (t, J = 6.5 Hz, 3H), 1.30 (m, 12H), 1.57 (m, 2H), 2.05 (tt, J = 18.4, 7.8 Hz, 2H), 6.03 (tt, J = 52, 5.2 Hz, 1H); ¹⁹F NMR δ 37.8 (t, J = 15.2 Hz, 2F), 45.2 (s, 2F),

⁽³⁰⁾ Reichardt, C. *Solvent Effects in Organic Chemistry*; Ebel, H. F., Ed.; Monographs–Modern Chemistry; New York: Verlag Chemie, New York, 1979; p 270.

46.9 (s, 4F), 53.1 (s, 2F), 60.1 (d, J = 52.1 Hz, 2F); Ms m/z (relative intensity) 428 (M⁺, 4.76), 399 (38.89), 385 (29.84), 43 (100); HRMS calcd for $C_{15}H_{20}F_{12}$ 428.1372, found 428.1370.

3-(2,2,3,3,4,4,5,5,6,6,7,7-Dodecafluoroheptyl)-4methyltetrahydrofuran(3ce): colorless oil; ¹H NMR δ 1.05 (d, J = 6.5 Hz, 0.7×3 H, cis-CH₃), 1.12 (d, J = 6.1 Hz, 0.3×3 H, trans-CH₃), 1.80–2.50 (m, 4H), 3.18–3.52 (m, 2H), 3.90–4.10 (m, 2H), 6.03 (tt, J = 52, 5.5 Hz, 1H); ¹⁹F NMR δ 36.3 (m, 2F), 45.0 (s, 2F), 46.4 (s, 4F), 52.6 (s, 2F), 60.5 (d, J = 52 Hz, 2F); Ms *m*/*z* (relative intensity) 401 (M⁺+1, 100), 399 (48.28), 383 (44.78), 370 (27.39), 55 (63.37); HRMS calcd for C₁₂H₁₂F₁₂O 400.0707, found 400.0696.

1,1,2,2,3,3,4,4,5,5,6,6-Dodecafluorohexylcyclohexane (3cf): colorless oil; ¹H NMR δ 1.15–2.20 (m, 11H), 6.02 (tt, *J* = 52, 6 Hz, 1H); ¹⁹F NMR δ 41.2 (d, *J* = 13 Hz, 2F), 43.7 (s, 2F), 45.1 (s, 2F), 46.5(s, 2F), 52.8 (s, 2F), 60.2 (d, *J* = 52 Hz, 2F); Ms *m*/*z* (relative intensity) 383 (M⁺-1, 1.08), 345 (12.59), 131 (16.56), 83 (100)). Anal. Calcd for C₁₂H₁₂F₁₂ C, 37.50; H, 3.15; F, 59.65. Found: C, 37.68; H, 3.11; F, 60.14.

1,1.1-Trifluorooctane (3da):²¹ colorless oil; ¹H NMR δ 0.90 (t, J = 6.5 Hz, 3H), 1.21–1.50 (m, 10H), 1.90–2.20 (m, 2H); ¹⁹F NMR δ –11.2 (t, J = 10 Hz, 3F).

1,1.1-Trifluorodecane (3dc):²¹ colorless oil; ¹H NMR δ 0.90 (t, J = 6.5 Hz, 3H), 1.28–1.70 (m, 14H), 1.98–2.28 (m, 2H); ¹⁹F NMR δ –11.0 (t, J = 10 Hz, 3F).

1-Chloro-1,1-difluorononane (3ec): colorless oil; ¹H NMR δ 0.89 (t, J = 6.5 Hz, 3H), 1.08–1.50 (m, 12H), 1.97–2.25 (m, 2H); ¹⁹F NMR δ –26.8 (t, J = 13 Hz, 2F); Ms m/z (relative intensity) 198 (M⁺, 1.00), 162 (7.56), 105 (15.64), 43 (100); HRMS calcd for C₉H₁₆F₂Cl (M⁺–1) 197.0908, found 197.0938.

Ethyl 2-Fluorodecanoate (3fc):^{25a} colorless oil;¹H NMR δ 0.88 (t, J = 7.0 Hz, 3H), 1.18–1.56 (m, 15H), 1.85 (m, 2H), 4.26 (q, J = 7.2 Hz, 2H), 4.86 (m, 1H); ¹⁹F NMR δ 115.4 (dt, J = 49.0, 24.5 Hz, 1F).

Ethyl 2-Fluoroundecanoate (3fd): colorless oil; ¹H NMR δ 0.89 (t, J = 6.5 Hz, 3H), 1.01–1.35 (m, 17H), 1.58–1.90 (m, 2H), 4.14 (q, J = 7.2 Hz, 2H), 4.86 (dt, J = 50, 6.5 Hz, 1H); ¹⁹F NMR δ 115.4 (dt, J = 49.6, 24 Hz, 1F); Ms *m/z* (relative intensity) 233 (M⁺+1, 66.86), 186 (9.16), 171 (29.35), 127 (10.72), 106 (100); HRMS calcd for C₁₃H₂₅FO₂ 232.1838, found 232.1840.

Ethyl 2-Cyclohexyl-2-fluoroacetate (3ff):^{25a} colorless oil; ¹H NMR δ 1.12–2.00 (m, 14H), 4.18 (q, J = 7.1 Hz, 2H), 4.88 (dd, J = 49.3, 4.3 Hz, 1H); ¹⁹F NMR δ 121.0 (dd, J = 49.3, 22 Hz, 1F).

Ethyl 2-Fluoro-4-(trimethylsilyl)butanoate (3fh):^{25a} colorless oil;¹H NMR δ 0.00 (s, 9H), 0.60 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H), 1.87 (m, 2H), 4.25 (q, J = 7.1 Hz, 2H), 4.80 (ddd, J = 49.4, 6.4, 4.9 Hz, 1H); ¹⁹F NMR δ 115.5 (dt, J = 49.8, 24 Hz, 1F).

Ethyl 5-Ethoxyl-2-fluoropentanoate (3fi):^{25a} colorless oil;¹H NMR δ 1.20 (t, J = 7.1 Hz, 3H), 1.31 (t, J = 7.1 Hz, 3H), 1.75 (m, 2H), 1.85–2.10 (m, 2H), 3.45 (m, 4H), 4.26 (q, J = 7.1 Hz, 2H), 4.94 (ddd, J = 50.0, 7.6, 4.3 Hz, 1H); ¹⁹F NMR δ 115.2 (dt, J = 50.2, 24 Hz, 1F).

Ethyl 2,2-Difluorononanoate (3gb):^{25d} colorless oil; ¹H NMR δ 0.90 (t, J = 7 Hz, 3H), 1.15–1.48 (m, 13H), 1.90–2.15 (m, 2H), 4.27 (q, J = 7.1 Hz, 2H); ¹⁹F NMR δ 28.7 (t, J = 17 Hz, 2F).

Ethyl 2,2-Difluorodecanoate (3gc):^{25d} colorless oil; ¹H NMR δ 0.90 (t, J = 7 Hz, 3H), 1.12–1.48 (m, 15H), 1.90–2.25 (m, 2H), 4.26 (q, J = 7.1 Hz, 2H); ¹⁹F NMR δ 28.7 (t, J = 17 Hz, 2F).

Ethyl 2,2-Difluoro-3-(4-methyltetrhydrofuran-3-yl)propionate (3ge): colorless oil; ¹H NMR δ 0.92 (d, J = 7.0 Hz, 0.75 × 3H, *cis*-CH₃), 1.03 (d, J = 6.2 Hz, 0.25 × 3H, trans-CH₃), 1.34 (t, J = 7.2 Hz, 3H), 1.80–2.05 (m, 2H), 2.10–2.55 (m, 2H), 3.45–3.49 (m, 2H), 3.86–4.06 (m, 2H), 4.31 (q, J = 7.1 Hz, 2H); ¹⁹F NMR δ 26.8–30.0 (m, 2F); Ms *m/z* (relative intensity) 223 (M⁺+1, 100), 193 (17.16), 177 (11.22), 99 (13.87); HRMS calcd for C₁₀H₁₆F₂O₃ 222.1068, found 222.1068.

Ethyl 2,2-Difluoro-2-cyclohexyl acetate (3gf).^{25d} colorless oil; ¹H NMR δ 1.03–2.05 (m, 14H), 4.33 (q, J = 7 Hz, 2H); ¹⁹F NMR δ 36.5 (d, J = 15 Hz, 2F). **CH**₃**CO**₂**CH**₂**CH**₂**CH**₂**CF**₂**CO**₂**Et** (3gg): colorless oil; ¹H NMR δ 1.34 (t, J = 7.1 Hz, 3H), 1.80 (m, 2H), 1.99 (s, 3H), 2.10–2.30 (m, 2H), 4.08 (t, J = 6.2 Hz, 2H), 4.32 (q, J = 7.1 Hz, 2H); ¹⁹F NMR δ 29.3 (t, J = 17.2 Hz, 2F); Ms *m*/*z* (relative intensity) 225 (M⁺+1, 8.20), 165 (100), 137 (19.67), 116 (8.64); HRMS calcd for C₉H₁₅O₄F₂ (M⁺+1) 225.0938, found 225.0933.

Ethyl 2,2-Difluoro-4-(trimethylsilyl)butanoate (3gh): colorless oil; ¹H NMR δ 0.02 (s, 9H), 0.65 (m, 2H), 1.32 (t, J = 7.2 Hz, 3H), 1.80–2.40 (m, 2H), 4.32 (q, J = 7.1 Hz, 2H); ¹⁹F NMR δ 29.2 (t, J = 17 Hz, 2F); Ms m/z (relative intensity) 224 (M⁺, 0.7), 196 (20.70), 101 (12.64), 73 (100); HRMS calcd for C₇H₁₄F₂O₂Si (M⁺-C₂H₄) 196.0732, found 196.0732.

Ethyl 2-Chlorooctanoate (3ha): colorless oil; ¹H NMR δ 0.90 (t, J = 7 Hz, 3H), 1.18–1.70 (m, 11H), 2.10–2.35 (m, 2H), 4.18 (q, J = 6.5 Hz, 2H), 4.52 (t, J = 6.5 Hz, 1H); Ms m/z (relative intensity) 207 (M⁺+1, 7.26), 171 (8.17), 127 (100), 94 (36.56); HRMS calcd for C₁₀H₁₉O₂ (M⁺–Cl) 171.1385, found 171.1376.

Ethyl 2-Chlorodecanoate (3hc): colorless oil; ¹H NMR δ 0.90 (t, J = 7 Hz, 3H), 1.05–1.80 (m, 15H), 2.10–2.30 (m, 2H), 4.18 (q, J = 6.5 Hz, 2H), 4.46 (t, J = 6.5 Hz, 1H); Ms m/z (relative intensity) 237 (M⁺+1, ³⁷Cl, 5.69), 235 (M⁺+1, ³⁵Cl, 17.11), 199 (8.60), 191 (18.30), 122 (100); HRMS calcd for C₁₂H₂₃ClO₂ (M⁺, ³⁵Cl) 234.1387, found 234.1415.

Ethyl 2-Chloro-2-cyclohexyl acetate (3hf): colorless oil; ¹H NMR δ 1.20–2.28 (m, 14H), 4.16 (q, J = 6.5 Hz, 2H), 4.45 (d, J = 6.5 Hz, 1H); Ms m/z (relative intensity) 205 (M⁺+1, 6.72), 169 (22.37), 122 (100); HRMS calcd for C₁₀H₁₇ClO₂ (M⁺, ³⁵Cl) 204.0917, found 204.0942.

CH₃COO(CH₂)₄CO₂Et (3ig): colorless oil; ¹H NMR δ 1.12–1.40 (m, 5H), 1.62 (m, 2H), 1.85–2.50 (m, 5H), 4.08 (m, 4H); Ms *m*/*z* (relative intensity) 189 (M⁺+1, 2.39), 145 (6.98), 128 (38.38), 101 (100); HRMS calcd for C₉H₁₆O₄ 188.1049, found 188.1050.

1,1-Dichloroheptane (3ja): colorless oil; ¹H NMR δ 0.90 (t, J = 7 Hz, 3H), 1.20–1.65 (m, 8H), 2.14 (m, 2H), 5.72 (t, J = 6.0 Hz, 1H); Ms m/z (relative intensity) 168 (M⁺, 0.37), 133 (8.93), 97 (29.60), 83 (10.82), 70 (100); HRMS calcd for C₇H₁₄-Cl₂ (M⁺, ³⁵Cl) 168.0673, found 168.0645.

1,1-Dichlorononane (3jc): colorless oil; ¹H NMR δ 0.87 (t, J = 7 Hz, 3H), 1.13–1.64 (m, 12H), 2.10 (m, 2H), 5.68 (t, J = 6.0 Hz, 1H); Ms m/z (relative intensity) 196 (M⁺, 2.50), 139 (7.16), 104 (19.77), 83 (41.63), 43 (100); HRMS calcd for C₉H₁₈-Cl₂ (M⁺, ³⁵Cl) 196.0785, found 196.0772.

3-(2,2-Dichloroethyl)-4-methyltetrahydrofuran (3je): colorless oil; ¹H NMR δ 0.95 (d, J = 6.3 Hz, 0.8×3 H, *cis*-CH₃), 1.04 (d, J = 6.6 Hz, 0.2×3 H, *trans*-CH₃), 1.88–2.21 (m, 2H), 2.30–2.48 (m, 2H), 3.45 (m, 2H), 3.92 (m, 2H), 5.70 (t, J = 6.0 Hz, 1H); Ms *m/z* (relative intensity) 183 (M⁺+1, 7.80), 182 (M⁺, 6.50), 81 (39.17), 69 (100); HRMS calcd for C₇H₁₂Cl₂O (M⁺, ³⁵Cl) 182.0265, found 182.0237. Anal. Calcd for C₇H₁₂Cl₂O: C, 45.92; H, 6.61. Found: C, 45.90; H, 6.73.

4,4-Dichlorobutyl acetate (3jg): colorless oil; ¹H NMR δ 1.88 (m, 2H), 2.05 (s, 3H), 2.27 (m, 2H), 4.10 (q, J = 6.0 Hz, 2H), 5.77 (t, J = 6.0 Hz, 1H); Ms m/z (relative intensity) 187 (M⁺+1, ³⁷Cl, 7.24), 185 (M⁺+1, ³⁵Cl, 11.48), 124 (15.02), 88 (33.43), 43 (100); HRMS calcd for C₄H₆Cl₂ (M⁺-CH₃CO₂H, ³⁵Cl) 123.9847, found 123.9847.

4,4-Dichloro-1-butanol (3jj): colorless oil; ¹H NMR δ 1.76 (m, 2H), 2.28 (m, 2H), 2.84 (s, 1H), 3.66 (t, J = 6.2 Hz, 2H), 5.80 (t, J = 6.0 Hz, 1H); Ms m/z (relative intensity) 143 (M⁺+1, 0.35), 125 (2.90), 96 (11.50), 76 (100); HRMS calcd for C₄H₈-Cl₂O (M⁺, ³⁵Cl) 141.9952, found 141.9941. Anal. calcd for C₄H₈-Cl₂O C, 33.58; H, 5.60. Found: C, 33.89; H, 5.65.

1,2-Dichloro-1,1,2-trifluorooctane (3ka):³¹ colorless oil; ¹H NMR δ 0.90 (t, J = 7.1 Hz, 3H), 1.20–1.85 (m, 8H), 2.10– 2.59 (m, 2H); ¹⁹F NMR δ –10.4 (s, 2F), 43.0 (m, 1F).

3-(2,3-Dichloro-2,3,3-trifluoropropyl)-4-methytetrahydrofuran (3ke):³¹ colorless oil; ¹H NMR δ 1.02 (d, J = 6.5 Hz, 0.5 × 3H, *cis*-CH₃), 1.13 (d, J = 6.1 Hz, 0.5 × 3H, trans-CH₃), 1.80–2.52 (m, 4H), 3.20–3.55 (m, 2H), 3.75–4.08 (m, 2H); ¹⁹F NMR δ –10.0 (s, 2F), 41.5 (m, 0.5F), 43.2 (m, 0.5F). **1,2-Dichloro-1,2,2-trifluoroethylcyclohexane (3kf)**:³¹ colorless oil; ¹H NMR δ 1.00–2.52 (m, 11H); ¹⁹F NMR δ –15.8 (s, 2F), 39.5 (m, 1F).

4,5-Dichloro-4,5,5-trifluoropentyl acetate (3kg):³¹ colorless oil; ¹H NMR δ 2.00 (s, 3H), 2.15–2.60 (m, 4H), 4.10 (t, J = 6.0 Hz, 2H); ¹⁹F NMR δ –10.3 (s, 2F), 42.8 (m, 1F).

7,7,8,8,9,9,10,10-Octafluorohexadecane (6a): colorless oil; ¹H NMR δ 0.89 (m, 6H), 1.17–1.50 (m, 16H), 1.75–2.20 (m, 4H); ¹⁹F NMR δ 37.5 (m, 4F), 46.7 (s, 4F); Ms *m/z* (relative intensity) 370 (M⁺, 1.55), 369 (9.09), 135 (25.24), 57 (72.20), 43 (100); HRMS calcd for C₁₆H₂₆F₈ 370.1970, found 370.1968.

7,7,8,8,9,9,10,10-Octafluoroeicosane (6c): colorless oil; ¹H NMR δ 0.89 (m, 6H), 1.20–1.52 (m, 24H), 1.78–2.23 (m, 4H); ¹⁹F NMR δ 37.3 (m, 4F), 46.4 (s, 4F); Ms *m/z* (relative intensity) 426 (M⁺, 0.87), 383 (2.58), 85 (35.93), 71 (56.06), 57 (100); HRMS calcd for C₂₀H₃₄F₈ 426.2533, found 426.2536.

7,7,8,8-Tetrafluoro-8-chloro-2-octanone (8): colorless oil; ¹H NMR δ 1.55–1.80 (m, 4H), 2.15 (s, 3H), 2.30–2.65 (m, 4H); ¹⁹F NMR δ –6.6 (s, 2F), 36.8 (m, 2F); Ms *m/z* (relative intensity) 237 (M⁺+1, ³⁷Cl, 15.64), 235 (M⁺+1, ³⁵Cl, 46.25), 135 (25.24), 43 (100). Anal. Calcd for C₈H₁₁F₄ClO: C, 40.95; H, 4.73; F, 32.39. Found: C, 40.74; H, 4.71; F, 32.28.

7,7,8,8-Tetrafluoro-2-tetradecanone (9a): colorless oil; ¹H NMR δ 0.89 (t, J = 7 Hz, 3H), 1.25–1.58 (m, 12H), 1.85– 2.40 (m, 7H), 2.68 (t, J = 7 Hz, 2H); ¹⁹F NMR δ 38.2 (m, 4F); Ms m/z (relative intensity) 285 (M⁺+1, 100), 264 (2.64), 58 (79.80), 43 (69.22); HRMS calcd for C₁₄H₂₄F₄O 284.1763, found 284.1769.

7,7,8,8-Tetrafluoro-2-hexadecanone (9c): colorless oil; ¹H NMR δ 0.89 (t, J = 7 Hz, 3H), 1.22–1.57 (m, 16H), 1.86– 2.41 (m, 7H), 2.74 (t, J = 7 Hz, 2H); ¹⁹F NMR δ 38.3 (m, 4F); Ms *m*/*z* (relative intensity) 313 (M⁺+1, 64.03), 311 (6.31), 58 (77.24), 43 (100); HRMS calcd for C₁₆H₂₈F₄O: 312.2076, found: 312.2065.

Typical Procedure for the Reaction of 1 with 10. Under a nitrogen atmosphere, into a 50 mL three-necked roundbottomed flask, equipped with magnetic stirrer, thermometer, and condenser, was added the mixture of **1b** (1.18 g, 5 mmol), **10a** (0.63 g, 7.5 mmol), Na₂S₂O₄ (1.38 g, 7.5 mmol), NaHCO₃ (0.63 g, 7.5 mmol), and DMSO (25 mL). The mixture was then heated to 75 °C for 8 h with stirring. The conversion of **1a** was 100%, determined by ¹⁹F NMR. After cooling, the mixture was poured into ice water (30 mL). The aqueous layer was extracted three times with ether (3 × 30 mL). The combined extracts were washed with water (3 × 20 mL) and dried over Na₂SO₄. After removing ether, the residue was subjected to column chromatography on silica gel to afford **11ba** as a colorless oil (1.02 g, yield 72%).

colorless oil (1.02 g, yield 72%). **H(CF₂)₄CH=CHC₄H₉ (11ba)**: colorless oil; ¹H NMR δ 0.92 (t, *J* = 7.0 Hz, 3H), 1.22–1.60 (m, 4H), 2.30–2.33 (m, 2H), 5.37–6.55 (m, 2H), 6.02 (tt, *J* = 52, 5.2 Hz, 1H); ¹⁹F NMR δ 29.7 (d, *J* = 9.6 Hz, 0.6 × 2F, Z-), 34.2 (d, *J* = 10.5 Hz, 0.4 × 2F, *E*-), 48.6 (s, 2F), 53.0 (s, 2F), 60.5 (d, *J* = 52 Hz, 2F); Ms *m/z* (relative intensity) 284 (M⁺, 8.96), 264 (12.20), 222 (12.75), 68 (100); HRMS calcd for C₁₀H₁₂F₈ 284.0811, found 284.0805.

H(**CF**₂)₄**CH=CHC**₆**H**₅ (**11bc**): colorless oil; ¹H NMR δ 5.52–6.96 (m, 3H), 7.20 (m, 5H); ¹⁹F NMR δ 28.3 (d, J = 10.0 Hz, 0.92 × 2F, Z-), 33.9 (d, J = 11 Hz, 0.08 × 2F, E-), 48.3 (s, 2F), 53.0 (s, 2F), 60.3 (d, J = 51.0 Hz, 2F); Ms *m/z* (relative intensity) 304 (M⁺, 36.87), 153 (100), 133 (62.84); HRMS calcd for C₁₂H₈F₈ 304.0498, found 304.0493.

H(CF₂)₄CH=CHCH₂OH (11bd): colorless oil; ¹H NMR δ 2.50 (s, 1H), 4.32 (dd, J = 6.1, 3.6 Hz, 0.85 × 2H, E-CH₂O), 4.44 (dt, J = 7.9, 3.5 Hz, 0.15 × 2H, Z-CH₂O), 5.47–6.58 (m, 2H), 6.05 (tt, J = 52, 5.6 Hz, 1H); ¹⁹F NMR δ 30.9 (s, 0.15 × 2F, Z-CF₂CH), 34.9 (d, J = 8.1 Hz, 0.85 × 2F, E-CF₂CH), 48.7 (t, J = 7.8 Hz, 0.85 × 2F), 49.0 (t, J = 7.0 Hz, 0.15 × 2F), 53.0 (d, J = 4.3 Hz, 2F), 60.5 (d, J = 51.8 Hz, 2F); Ms *m/z* (relative intensity) 258 (M⁺, 0.30), 241 (8.71), 221 (3.64), 57 (100); HRMS calcd for C₇H₅F₈O (M⁺–1) 257.0213, found 257.0192.

H(CF₂)₆CH=CHC₄H₉ (11ca): colorless oil; ¹H NMR δ 0.92 (t, J = 7.0 Hz, 3H), 1.24–1.60 (m, 4H), 2.30–2.33 (m, 2H), 5.43–6.39 (m, 2H), 6.04 (tt, J = 52, 6 Hz, 1H); ¹⁹F NMR δ 30.0 (d, J = 11.9 Hz, 0.53 × 2F, Z-CF₂CH), 34.6 (d, J = 11.9 Hz, 0.47 × 2F, E-CF₂CH), 45.1 (s, 2F), 47.0 (m, 4F), 53.2 (s,

2F), 60.5 (d, J = 51.9 Hz, 2F); Ms m/z (relative intensity) 384 (M⁺, 0.89), 344 (9.71), 322 (7.18), 121 (38.05), 68 (100); HRMS calcd for C₁₂H₁₂F₁₂ 384.0747, found 384.0748.

H(CF₂)₆CH=CHC₆H₅ (11cc): colorless oil; ¹H NMR δ 5.35–6.95 (m, 3H), 7.27 (m, 5H); ¹⁹F NMR δ 29.3 (d, J = 13 Hz, 0.82 × 2F, Z-CF₂CH), 34.0 (d, J = 12 Hz, 0.18 × 2F, E-CF₂-CH), 44.8 (s, 2F), 46.9 (s, 4F), 53.2 (s, 2F), 60.4 (d, J = 51.0 Hz, 2F); Ms *m/z* (relative intensity) 404 (M⁺, 14.32), 403 (100), 384 (12.38), 153 (11.96); HRMS calcd for C₁₄H₈F₁₂ 404.0434, found 404.0438. Anal. Calcd for C₁₄H₈F₁₂: C, 41.60; H, 2.00; F, 56.40. Found: C, 41.47; H, 1.96; F, 56.52.

H(CF₂)₆CH=CHCH₂OH (11cd): colorless oil; ¹H NMR δ (CD₃COCD₃) 3.45 (s, 1H), 4.40–4.30 (m, 2H), 5.70–6.72 (m, 2H), 6.82 (tt, J = 50.9, 5.3 Hz, 1H); ¹⁹F NMR δ (CD₃COCD₃) 25.7 (d, J = 12.6 Hz, 0.15 × 2F, Z-CF₂CH), 29.4 (d, J = 11.9 Hz, 0.85 × 2F, E-CF₂CH), 40.2 (s, 2F), 42.1 (s, 4F), 48.3 (s, 2F), 57.2 (d, J = 50.7 Hz, 2F); Ms m/z (relative intensity) 357 (M⁺-1, 2.12), 340 (15.56), 290 (18.86), 139 (40.63), 57 (100). Anal. Calcd for C₉H₆F₁₂O: C, 30.18; H, 1.68; F, 63.65. Found: C, 30.24; H, 1.87; F, 63.22.

CF₃CH₂CH=CHC₄H₉ (11da):²² colorless oil; ¹H NMR δ 0.89 (t, J = 7.1 Hz, 3H), 1.24 (m, 4H), 1.94 (m, 2H), 2.65 (m, 2H), 5.40–6.30 (m, 2H); ¹⁹F NMR δ –11.6 (t, J = 11.0 Hz, 0.7 × 3F, Z-), –10.6 (t, J = 10.9 Hz, 0.3 × 3F, E-); Ms *m/z* (relative intensity) 166 (M⁺, 28.03), 119 (100), 117 (85.75), 69 (18.95); HRMS calcd for C₈H₁₃F₃ 166.0969, found 166.0965.

CF₃CH₂CH=CHC₆H₁₃ (11db):²² colorless oil;¹H NMR δ 0.88 (t, J = 7.1 Hz, 3H), 1.27 (m, 8H), 1.98 (m, 2H), 2.67 (m, 2H), 5.45–6.43 (m, 2H); ¹⁹F NMR δ –11.4 (t, J = 11.0 Hz, 0.75 × 3F, Z-), –10.2 (t, J = 10 Hz, 0.25 × 3F, E-); Ms *m*/*z* (relative intensity) 194 (M⁺, 40.70), 151 (28.88), 69 (72.98), 43 (100); HRMS calcd for C₁₀H₁₇F₁₂: 194.1283, found: 194.1291.

C₆**H**₅**CH=CHCFHCO**₂**Et** (11fc): colorless oil; ¹H NMR δ 1.32 (t, J = 7.2 Hz, 3H), 4.30 (q, J = 7.2 Hz, 2H), 5.40–6.35 (m, 2H), 6.85–7.05 (m, 1H), 7.40 (m, 5H); ¹⁹F NMR δ 97.8 (ddd, J = 48.0, 10.9, 4.0 Hz, 0.5F, Z-), 106.7 (dd, J = 48.0, 11.0 Hz, 0.5F, *E*-); Ms *m*/*z* (relative intensity) 209 (M⁺+1, 2.21), 208 (M⁺, 16.49), 135 (100), 115 (73.29); HRMS calcd for C₁₂H₁₃-FO₂ 208.0899, found 208.0889.

C₄H₉CH=CHCF₂CO₂Et (11ga): colorless oil; ¹H NMR δ 0.90 (t, J = 7.2 Hz, 3H), 1.27–1.47 (m, 7H), 2.20–2.32 (m, 2H), 4.30 (q, J = 7.2 Hz, 2H), 5.51–6.30 (m, 2H); ¹⁹F NMR δ 21.8 (d, J = 13.7 Hz, 0.55 × 2F, Z-), 26.0 (dd, J = 10.8, 4.5 Hz, 0.45 × 2F, *E*-); Ms *m/z* (relative intensity) 207 (M⁺+1, 2.02), 206 M⁺, 2.73), 186 (5.20), 113 (100), 77 (99.99); HRMS calcd for C₁₀H₁₆F₂O₂: 206.1118, found: 206.1116. Anal. Calcd for C₁₀H₁₆F₂O₂: C, 58.24; H, 7.82; F, 18.42. Found: C, 58.17; H, 7.70; F, 17.97.

E-C₆H₅CH=CHCF₂CO₂Et (11gc): colorless oil; ¹H NMR δ (CD₃COCD₃): 1.08 (t, J = 7.2 Hz, 3H), 4.06 (q, J = 7.2 Hz, 2H), 5.92 (dt, J = 14.6, 12.7 Hz, 1H), 7.04 (dt, J = 14.6, 1.8 Hz, 1H), 7.36 (m, 5H); ¹⁹F NMR δ (CD₃COCD₃): 11.5 (d, J = 13 Hz, 2F); Ms *m*/*z* (relative intensity) 227 (M⁺+1, 1.34), 226 (M⁺, 9.14), 153 (100), 133 (67.75); HRMS calcd for C₁₂H₁₂F₂O₂ 226.0805, found 226.0807.

E-HOCH₂CH=CHCF₂CO₂Et (11gd): colorless oil; ¹H NMR δ 1.30 (t, J = 7.2 Hz, 3H), 3.23 (s, 1H), 4.21 (dd, J = 4.2, 2.0 Hz, 2H), 4.29 (q, J = 7.2 Hz, 2H), 5.95 (dtt, J = 15.8, 11.3, 2.0 Hz, 1H), 6.42 (dtt, J = 15.8, 4.1, 2.5 Hz, 1H); ¹⁹F NMR δ 26.4 (dd, J = 10.6, 3.9 Hz, 2F); Ms *m*/*z* (relative intensity) 181-(M⁺+1, 14.04), 163 (84.06), 135 (100), 107 (53.34), 90 (74.74); HRMS calcd for C₇H₁₀F₂O₃ 180.0598, found 180.0581.

CH₃OCH₂CH=CHCF₂CO₂Et (11ge): colorless oil; ¹H NMR δ 1.35 (t, J = 7.2 Hz, 3H), 3.30 (s, 0.38 × 3H, *Z*-CH₃O), 3.37(s, 0.62 × 3H, E-CH₃O), 4.05 (dq, J = 7.7, 2.0 Hz, 0.62 × 2H, *E*-**CH₂CH=CH**), 4.20 (dq, J = 7.6, 2.2 Hz, 0.38 × 2H, Z-**CH₂**-CH=CH), 4.35 (q, J = 7.2 Hz, 2H), 5.56–6.36 (m, 2H); ¹⁹F NMR δ 22.8 (d, J = 15.9 Hz, 0.38 × 2F, *Z*-), 27.0 (dd, J = 11.0, 4.1 Hz, 0.62 × 2F, *E*-); Ms *m*/*z* (relative intensity) 195-(M⁺+1, 1.86), 174 (91.06), 163 (10.60), 121 (100), 90 (69.49). Anal. Calcd for C₈H₁₂F₂O₃: C, 49.48; H, 6.23; F, 19.57. Found: C, 49.74; H, 6.40; F, 19.63.

Typical Procedure for Preparation of 12 and 13. An amount of **1a** (2.55 g, 10 mmol), Na₂S₂O₄ (2.61 g, 15 mmol), NaHCO₃ (1.26 g, 15 mmol) and DMSO (30 mL) was stirred at

CF₃(CF₂)₃SO₂Na (12a):^{17d} white solid; ¹⁹F NMR δ (D₂O) 4.3 (s, 3F), 46.5 (s, 2F), 48.5 (s, F), 53.1 (s, 2F, CF₂SO₂Na).

H(CF₂)₄SO₂Na (12b):^{17e} white solid; ¹⁹F NMR δ (D₂O) 47.2 (s, 2F), 52.6 (s, 2F), 53.3 (s, 2F, CF₂SO₂Na), 61.6 (d, J = 51 Hz, 2F).

CF₃CH₂SO₂Na (12d):²¹ white solid, ¹⁹F NMR δ (D₂O) -17.6 (t, J = 12 Hz, 3F), ¹H NMR δ (D₂O) 3.23 (q, J = 12 Hz, 2H).

CF₃(CF₂)₃SO₂Cl (13a):^{17d} colorless oil;¹⁹F NMR δ (neat) 4.3 (s, 3F), 27.7 (s, 2F, CF₂SO₂Cl), 43.1 (s, 2F), 49.0 (s, 2F).

H(**CF**₂)₄**SO**₂**Cl** (13b):^{17e} colorless oil; ¹⁹F NMR δ (neat) 27.7 (s, 2F, CF₂SO₂Cl), 43.6 (s, 2F), 51.3 (s, 2F), 60.8 (d, J = 51 Hz, 2F).

CF₃CH₂SO₂Cl (13d):²¹ colorless oil;¹⁹F NMR δ (neat) -15.0 (t, J = 10 Hz, 3F); ¹H NMR δ (neat) 4.37 (q, J = 9 Hz, 2H).

Typical Inhibition Experiment: Under N_2 atmosphere, **1c** (1.68 g, 5 mmol), **2a** (0.63 g, 7.5 mmol), $Na_2S_2O_4$ (1.38 g,

7.5 mmol), NaHCO₃ (0.63 g, 7.5 mmol), and DMSO (25 mL) was added to a three-necked round-bottomed flask. After the mixture was stirred for 5 h at 75 °C under the laboratory light, ¹⁹F NMR analysis, i.e., intergration ratio of peaks at -8.0 ppm (R_F**CF**₂Cl) and 37.7 ppm (R_F**CF**₂CH₂CH₂R), indicated that the conversion of **1c** was 100%. When *p*-DNB (0.17 g, 1 mmol) was present, after the mixture was stirred for 5 h at 75 °C, ¹⁹F NMR analysis showed 50% conversion of **1c**.

Similarly, when HQ (0.11 g, 1 mmol) was present instead of *p*-DNB and the reaction conducted for 5 h at 75 °C, ¹⁹F NMR analysis showed 33% conversion of **1c**.

Acknowledgment. We thank Professor Huang, W.-Y. for his encouragement and the Natural Science Foundation of China for support of this work.

Supporting Information Available: ¹H NMR spectra of 3bc, 3be, 3ca, 3cc, 3cd, 3fh, 3fi, 3ge, 3gg, 3jj, 11bd, 11ca, 11cd, 11ga, 11gd, and 11ge. ¹⁹F NMR spectra of 3bc, 3be, 3ca, 3cc, 3cd, 3fh, 3fi, 3gg, 11bd, 11ca, 11cd, 11ga, 11gd, and 11ge.

JO9900937